

Representation learning for acoustic scene analysis

Victor Bisot

Ph.D. overview

Work with Romain Serizel, Slim Essid and Gaël Richard

October 12, 2018

Acoustic scene and event analysis

 Make machines capable of analyzing and reacting to their surrounding acoustic environment

The different tasks

- Context aware devices
 - Smart cars and homes
 - Noise monitoring in cities
 - Surveillance

- Context aware devices
 - Smart cars and homes
 - Noise monitoring in cities
 - Surveillance
- Analysis and indexing
 - Multimedia indexing
 - Forensics
 - Bio-acoustics

- Context aware devices
 - Smart cars and homes
 - Noise monitoring in cities
 - Surveillance
- Analysis and indexing
 - Multimedia indexing
 - Forensics
 - Bio-acoustics
- Machines can outperform humans
 - $\rightarrow\,$ below 60% accuracy for humans
 - $\rightarrow\,$ up to 90% for computational approaches

- Context aware devices
 - Smart cars and homes
 - Noise monitoring in cities
 - Surveillance
- Analysis and indexing
 - Multimedia indexing
 - Forensics
 - Bio-acoustics
- Machines can outperform humans
 - $\rightarrow\,$ below 60% accuracy for humans
 - $\rightarrow\,$ up to 90% for computational approaches

	Scene classification		Eve	nt detect	ion	
Dcase challenge	2013	2016	2017	2013	2016	2017
Nbr teams	10	35	49	7	21	34

Acoustic scene analysis systems

Early approaches

• Combine hand-crafted acoustic features inspired from music and speech processing tasks

Early approaches

• Combine hand-crafted acoustic features inspired from music and speech processing tasks

• Rely on simple linear or probabilistic classifiers to interpret the features

Modern approaches and remaining problems

- Recent rise of deep learning approaches
 - → Scene and event classification [Piczark et al., 2015; Valenti et al. 2016]
 - $\rightarrow\,$ Event detection and tagging [Cakir et al., 2015,2017; Xu et al. 2017]

Modern approaches and remaining problems

- Recent rise of deep learning approaches
 - → Scene and event classification [Piczark et al., 2015; Valenti et al. 2016]
 - $\rightarrow~$ Event detection and tagging [Cakir et al., 2015,2017; Xu et al. 2017]
- Learning complex models from time-frequency representations
 - $\rightarrow\,$ Representation learning = convolutional layers

Modern approaches and remaining problems

- Recent rise of deep learning approaches
 - → Scene and event classification [Piczark et al., 2015; Valenti et al. 2016]
 - $\rightarrow\,$ Event detection and tagging [Cakir et al., 2015,2017; Xu et al. 2017]
- Learning complex models from time-frequency representations
 - $\rightarrow\,$ Representation learning = convolutional layers

- Are simple spectrograms the best input?
- ▶ What happens in more challenging conditions (overlap, noise ...)?
- How to deal with limited training data?

Our approach

- An extra feature learning step with nonnegative matrix factorization (NMF) techniques
 - $\rightarrow\,$ Learn decompositions suited for representing multi-source environments

Our approach

- An extra feature learning step with nonnegative matrix factorization (NMF) techniques
 - $\rightarrow\,$ Learn decompositions suited for representing multi-source environments

• Combination of spectrogram image features for improved acoustic scene classification

- Combination of spectrogram image features for improved acoustic scene classification
- Unsupervised feature learning with NMF
 - $\rightarrow\,$ Automatically learn relevant features in multi-source environments
 - $\rightarrow\,$ Promising improvements with a simple system design

- Combination of spectrogram image features for improved acoustic scene classification
- Unsupervised feature learning with NMF
 - $\rightarrow\,$ Automatically learn relevant features in multi-source environments
 - $\rightarrow\,$ Promising improvements with a simple system design
- Supervised NMF with TNMF
 - $\rightarrow\,$ Learn discriminative dictionaries for better representations
 - $\rightarrow\,$ Simple models to challenge complex neural networks

- Combination of spectrogram image features for improved acoustic scene classification
- Unsupervised feature learning with NMF
 - $\rightarrow\,$ Automatically learn relevant features in multi-source environments
 - ightarrow Promising improvements with a simple system design
- Supervised NMF with TNMF
 - $\rightarrow\,$ Learn discriminative dictionaries for better representations
 - $\rightarrow\,$ Simple models to challenge complex neural networks
- Deep learning and NMF
 - $\rightarrow\,$ NMF as suitable input to deep networks
 - $\rightarrow\,$ Event detection with NMF + recurrent and convolutional networks
 - ightarrow Jointly learn nonnegative dictionaries and neural networks

- Combination of spectrogram image features for improved acoustic scene classification
- Unsupervised feature learning with NMF
 - $\rightarrow\,$ Automatically learn relevant features in multi-source environments
 - $\rightarrow\,$ Promising improvements with a simple system design
- Supervised NMF with TNMF
 - $\rightarrow\,$ Learn discriminative dictionaries for better representations
 - $\rightarrow\,$ Simple models to challenge complex neural networks
- Deep learning and NMF
 - $\rightarrow~\mathsf{NMF}$ as suitable input to deep networks
 - $\rightarrow\,$ Event detection with NMF + recurrent and convolutional networks
 - ightarrow Jointly learn nonnegative dictionaries and neural networks

Unsupervised feature learning

Scene classification evaluation

Task-driven NMF

Deep learning and NMF

Conclusion

8/42

Dictionary learning and scene understanding

 Humans rely on specific event cues to recognize acoustic environments

Nonnegative matrix factorization

NMF model with K components

$$\min_{\mathsf{W},\mathsf{H}\geq \mathsf{o}} D(\mathsf{V}\|\mathsf{W}\mathsf{H}) \text{ with } \mathsf{W} \in \mathbb{R}_+^{F \times K} \text{ and } \mathsf{H} \in \mathbb{R}_+^{K \times T}$$

A different approach

- Distance between individual NMF dictionaries as classification criteria [Cauchi et al., 2011; Benetos et al., 2012]
- NMF as a direct event detection tool: event activity by thresholding activation matrix [Mesaros et al.,2015,2016; Benetos et al., 2016]

A different approach

- Distance between individual NMF dictionaries as classification criteria [Cauchi et al., 2011; Benetos et al., 2012]
- NMF as a direct event detection tool: event activity by thresholding activation matrix [Mesaros et al.,2015,2016; Benetos et al., 2016]

Our approach: use NMF as a feature learning tool

- $\rightarrow\,$ Learn one dictionary of basis events representing the entire data
- $\rightarrow\,$ Train classifiers separately on NMF representations

From spectrograms to NMF features

 Group all scene constant-Q transform spectrograms in one data matrix

Scene classification with NMF

Unsupervised feature learning Scene classification evaluation

Task-driven NMF

Deep learning and NMF

Conclusion

13/42

Scene classification datasets

Evaluation on 3 of the largest public scene classification datasets

	LITIS Rouen	DCASE 2016	DCASE 2017
Nbr of segments	3026	1170	4680
Length of segments	30 sec	30 sec	10 sec
Nbr of labels	19	15	15
Cross validation folds	20	4	4

bus	car	café/restaurant	city center
forest path	grocery store	home	beach
library	metro station	office	residential area
train	tram	park	

First scene classification results

Accuracy scores on the 3 scene classification datasets

Feature	LITIS Rouen	DCASE 2016	DCASE2017
Kernel PCA	96.0	80.2	82.2
Sparse NMF	94.6	82.7	84.4.
Convolutive NMF	94.8	82.5	83.7
Baseline	91.7	72.5	74.8
HOG + SPD [1,2]	94.0	77.7	80.3
MFCC + RQA [1,3]	86.0	67.1	-

 Comparison of proposed techniques to best hand-crafted features from DCASE 2013 challenge

- Histogram of oriented gradients (HOG) image features
- MFCC + Recurrence quantification analysis (RQA)

[1] Rakotomamonjy and Gasso 2014, [2] Bisot et al. 2015, [3] Roma et al. 2013,

15/42

First scene classification results

Accuracy scores on the 3 scene classification datasets

Feature	LITIS Rouen	DCASE 2016	DCASE2017
Kernel PCA	96.0	80.2	82.2
Sparse NMF	94.6	82.7	84.4 .
Convolutive NMF	94.8	82.5	83.7
Baseline	91.7	72.5	74.8
HOG + SPD [1,2]	94.0	77.7	80.3
MFCC + RQA [1,3]	86.0	67.1	-

- Comparison of proposed techniques to best hand-crafted features from DCASE 2013 challenge
 - Histogram of oriented gradients (HOG) image features
 - MFCC + Recurrence quantification analysis (RQA)

[1] Rakotomamonjy and Gasso 2014, [2] Bisot et al. 2015, [3] Roma et al. 2013,

Potential for improvement

Confusion matrix for Sparse NMF on DCASE 2017 dataset

- Confusions between similar acoustic environments
- Promising results with unsupervised feature learning and simple classifiers

• Can we adapt the decomposition to the task?

Unsupervised feature learning

Task-driven NMF

TNMF model Event detection evaluation

Deep learning and NMF

Conclusion

16/42

Unsupervised feature learning

Task-driven NMF TNMF model Event detection evaluation

Deep learning and NMF

Conclusion

16/42

Supervised Matrix Factorization

Make the decomposition better at dealing with the task at hand
A Leverage label information to learn more discriminative dictionaries

Supervised Matrix Factorization

Make the decomposition better at dealing with the task at hand
A Leverage label information to learn more discriminative dictionaries

Task-driven dictionary learning (TDL) [Mairal et al. 2009]

- Jointly learn dictionaries and classifiers
- Allows for efficient nonnegative variants
 - \rightarrow source separation [Sprechmann et al. 2014]
 - \rightarrow speaker identification [Serizel et al. 2017]
 - ightarrow acoustic scene and event classification
Task-driven dictionary learning

TDL formulation

Composition of optimal projection function and a supervised loss function

$$\mathbf{h}^{\star}(\mathbf{v},\mathbf{W}) = \min_{\mathbf{h}\in\mathbb{R}^{K}}\|\mathbf{v}-\mathbf{W}\mathbf{h}\| + \lambda_{1}\|\mathbf{h}\|_{1} + rac{\lambda_{2}}{2}\|\mathbf{h}\|_{2}^{2}$$

 $\min_{\mathbf{W},\mathbf{A}} \mathbb{E}_{y,\mathbf{v}}[\ell_s(y,\mathbf{A},\mathbf{h}^\star(\mathbf{v},\mathbf{W}))] + rac{
u}{2} \|\mathbf{A}\|_2^2$

- $h^{\star}(\mathbf{v},\mathbf{W}):$ optimal projection of a data point on the dictionary \rightarrow learned features for classification
- ℓ_1 and ℓ_2 regularizations: λ_1 and λ_2
- ℓ_s : supervised classification loss
- A classifier parameters

TNMF problem formulation

Task-driven NMF

<

$$\begin{cases} \mathbf{h}^{\star}(\mathbf{v}, \mathbf{W}) = \min_{\mathbf{h} \in \mathbb{R}_{+}^{K}} D_{\beta}(\mathbf{v} | \mathbf{W} \mathbf{h}) + \lambda_{1} \| \mathbf{h} \|_{1} + \frac{\lambda_{2}}{2} \| \mathbf{h} \|_{2}^{2} \\ \min_{\mathbf{W} \geq 0, \mathbf{A}} \mathbb{E}_{y, \mathbf{v}}[\ell_{s}(y, \mathbf{A}, \mathbf{h}^{\star}(\mathbf{v}, \mathbf{W}))] + \frac{\nu}{2} \| \mathbf{A} \|_{2}^{2} \end{cases}$$

- Regroup the sparse NMF-based classification systems in one problem
 - ▶ $\mathbf{h}^{\star}(\mathbf{v}, \mathbf{W}) \rightarrow$ sparse NMF projection with the β -divergence
 - ► $\ell_s(y, \mathbf{A}, \mathbf{h}^*(\mathbf{v}, \mathbf{W})) = -\log(\mathsf{P}(y|\mathbf{h}^*, \mathbf{A})) \rightarrow \text{multinomial logistic regression}$

TNMF algorithm

Alternate update of A et W

For a fixed number of iterations:

 $\{ Classifier \ update \}$

- Compute optimal projection on full training data $H^*(V, W)$
- Update A with one iteration of L-BFGS for logistic regression

TNMF algorithm

Alternate update of A et W

For a fixed number of iterations:

{Classifier update}

- Compute optimal projection on full training data $H^*(V, W)$
- Update A with one iteration of L-BFGS for logistic regression

{Dictionary update}

- On one epoch
 - 1. Draw a random data point \mathbf{v} with label y
 - 2. Compute optimal projection $\mathbf{h}^*(\mathbf{v}, \mathbf{W})$ and gradient $\nabla_{\mathbf{W}} \ell_s(y, \mathbf{A}, \mathbf{h}^*(\mathbf{v}, \mathbf{W}))$
 - 3. Update W by projected gradient $W \leftarrow \Pi_{W_+}[W \rho_t \nabla_W \ell_s(y, A, h^*(v, W))]$
- \blacktriangleright $\Pi_{\mathcal{W}_+}$ projection operation on nonnegative dictionaries with unit ℓ_2 norm basis vectors

 $Code \ available \ on \ github.com/rserizel/TGNMF$

Algorithm comparison

Algorithm comparison on DCASE 2017 ASC dataset

Scene classification results

DCASE 2016 development data set

DCASE 2017 development data set

DCASE 2016 challenge

	Features	Classifier	Accuracy	Rank/49
[1]	Mel spectrum	CNN	86.2	7
[2]	Audio features	DNN fusion	86.4	5
[3]	Cepstral features	DNN + GMM	87.2	4
[4]	MFCC + spectrograms	CNN + I-vector	89.7	1
Our system	СQТ	TNMF fusion	87.7	3

- TNMF system ranked 2nd out of 35 teams
- Above almost all deep learning-based systems

[1] Valenti et al. [2] Marchi et al. [3] Park et al. [4] Eghbal-Zadeh et al.

23/42

Unsupervised feature learning

Task-driven NMF TNMF model Event detection evaluation

Deep learning and NMF

Conclusion

Sound event detection

- DCASE 2016 task3: event detection in real life conditions
 - \rightarrow 12 recordings of 3 to 5 minutes per scene
 - \rightarrow 2 environments: home and residential area
 - ightarrow 7 to 11 event categories per scene

- TUT SED Synth 2016: Synthetic dataset
 - \rightarrow 100 synthetic mixtures of 5 minutes each
 - $\rightarrow\,$ Mixtures of isolated events collected for online sound banks
 - ightarrow 16 different labels with various degrees of overlap

NMF-based system for event detection

- Turn multi-label problem into a simple multi-class problem for training
- \blacktriangleright Threshold output probabilities \rightarrow predict multiple labels per frame

Event detection results

DCASE 2016 Task3 dataset: event detection in real life conditions

Error Rate (1sec) F1 score (1sec)

Event detection results

DCASE 2016 Task3 dataset: event detection in real life conditions

TUT SED synth 2016: synthetic event detection dataset

[1] Mesaros et al. 2016 [2] Zohrër and Penkopf, 2016 [3] Vu and Wang, 2016 [4] Cakir et al. 2017 26/42

Unsupervised feature learning

Task-driven NMF

Deep learning and NMF

Scene classification evaluation Event detection evaluation

Conclusion

DNN for sound scene analysis

Scene and event classification

Convolutional neural networks on time-frequency representations

Acoustic event detection

 Convolutional recurrent neural networks (CRNN) on time-frequency representations

NMF as input of DNNs

- \blacktriangleright NMF \rightarrow good representation learning tools for acoustic scenes
- \blacktriangleright Deep neural networks \rightarrow powerful classification and detection models

NMF as input of DNNs

- $\blacktriangleright \mathsf{NMF} \to \mathsf{good} \mathsf{ representation learning tools for acoustic scenes}$
- Deep neural networks \rightarrow powerful classification and detection models

NMF as input of DNNs

- \blacktriangleright NMF \rightarrow good representation learning tools for acoustic scenes
- Deep neural networks \rightarrow powerful classification and detection models

- Compatibility between NMF and standard fully-connected layers
- NMF features with RNN and CNN layers for event detection
- Jointly learning NMF and DNN parameters in the TNMF framework

Other works linking NMF to DNNs

 Replace NMF with deep auto-encoders for source separation [Smaragdis et al., 2017]

 Build a deep NMF by unfolding multiplicative update algorithm for NMF [Le Roux et al., 2015; Wisdom et al. 2017]

Layer-wise pre-training and NMF

TNMF = one hidden layer MLP

DNN-TNMF

 $\min_{\mathbf{W} \ge 0,\Theta} \mathbb{E}_{y,\mathbf{v}}[\ell_s(y, F(\mathbf{v}, \Theta, \mathbf{W}))]$

Unsupervised feature learning

Task-driven NMF

Deep learning and NMF Scene classification evaluation

Conclusion

DNN architecture search

- Grid-search of network best architecture for all input representations
 - $\rightarrow\,$ Simple multi-layer perceptron as a classifier trained with SGD
 - $\rightarrow~{\sf ReLU}$ activations and dropout

	Dcase 2016		Dcase2017		
	Layers	Units		Layers	Units
CQT	3	256		3	512
NMF $K = 256$	2	256		2	256
NMF $K = 512$	2	256		3	256
NMF $K = 1024$	2	512		3	512

Scene classification results

DCASE development sets results

Dcase 2016 Challenge set				
	Input	Classifier	Accuracy	Rank/49
	TNMF	Logistic regression	87.7	3
[1]	MFCC + Mel	CNN + I vector	89.7	1
	CQT	DNN	86.7	-
	NMF	DNN	88.5	-
	TNMF	DNN	90.5	-

[1] Eghbal-Zadeh et al. 2016

Room for improvement

• DCASE 2017 challenge for scene classification

- ► More challenging conditions: mismatch between training and challenge set → Drop in performance for all methods on challenge set
- What did the top systems do that we didn't?
 - Use of augmentations and vary input representations
 - Include temporal modeling in neural networks (see NMF+CRNN)

Unsupervised feature learning

Task-driven NMF

Deep learning and NMF Scene classification evaluation Event detection evaluation

Conclusion

NMF+CRNN for event detection

- Inspired from state of the art event detection CRNNs [Cakir et al., 2017]
- Separation of representation learning in two steps
 - $\rightarrow~$ NMF representation on the frequency axis
 - $\rightarrow\,$ Model temporal information with CNN and RNN layers

Results (1)

Results (2)

69 70

CRNN

Mel NMF

Results (2)

DNN-TNMF first results

▶ Jointly learn NMF and 1 hidden layer DNN for scene classification

Dcase 2017					
	Sparse NMF	TNMF	NMF + DNN	DNN-TNMF	
K = 256	79.3	85.0	84.3	85.5	
K = 512	83.1	86.3	86.3	86.1	

Unsupervised feature learning

Task-driven NMF

Deep learning and NMF

Conclusion

Summary of contributions

- A combination of spectrogram image features for improved scene classification
- Simple and efficient unsupervised NMF feature learning systems \rightarrow Clear benefit compared to hand-crafted audio features
- Adapt NMF feature learning to the task with TNMF
 - $\rightarrow\,$ Learn smaller more discriminative dictionaries
 - $\rightarrow\,$ An efficient alternative to deep learning on smaller datasets
- NMF as a better input to train deep networks
 - $\rightarrow\,$ Leave representation learning role to NMF for multi-source environments
 - $\rightarrow\,$ Allows for better performance with simpler networks
 - $\rightarrow\,$ Steps towards an end-to-end system with DNN-TNMF

Perspectives

Make our systems more robust to noisy and unseen data

- Vary input time-frequency representations to vary NMF features
- Explore use of compatible augmentations with our approach
- Simply perform fusion with various networks

Perspectives

Make our systems more robust to noisy and unseen data

- Vary input time-frequency representations to vary NMF features
- Explore use of compatible augmentations with our approach
- · Simply perform fusion with various networks
- Large scale weakly-labeled data and tagging problems
 - Recent release of larger scale event classification datasets with Audioset
 - Adapt supervised NMF models to multiple instance learning for tagging
 - Extend our models to networks with attention classification layers

Perspectives

Make our systems more robust to noisy and unseen data

- Vary input time-frequency representations to vary NMF features
- Explore use of compatible augmentations with our approach
- · Simply perform fusion with various networks
- Large scale weakly-labeled data and tagging problems
 - Recent release of larger scale event classification datasets with Audioset
 - Adapt supervised NMF models to multiple instance learning for tagging
 - Extend our models to networks with attention classification layers
- Towards an end-to-end approach with DNN-TNMF
 - Exploration of efficient algorithms on large scale datasets
 - Study compatibility with recurrent and convolutional layers
Publications

- Journal article and book chapter
 - V. Bisot, R. Serizel, S. Essid et G. Richard, "Acoustic scene classification with matrix factorization for unsupervised feature learning," in *IEEE Transactions on Audio, Speech, and Language Processing*, 2017.
 - R. Serizel, V. Bisot, S. Essid et G. Richard, "Acoustic features for environmental sound analysis," in *Computational analysis of sound scenes and events*, Springer, 2018.
- Conference proceedings
 - V. Bisot, R. Serizel, S. Essid et G. Richard, "Nonegative feature learning methods for acoustic scene classification," in *Proc. of DCASE Workshop*, 2017.
 - V. Bisot, R. Serizel, S. Essid et G. Richard, "Leveraging deep neural networks with nonnegative representations for improved environmental sound classification," in *Proc. of MLSP*, 2017.
 - V. Bisot, R. Serizel, S. Essid et G. Richard, "Overlapping sound event detection with supervised nonnegative matrix factorization," in *Proc. of ICASSP*, 2017.
 - V. Bisot, R. Serizel, S. Essid et G. Richard, "Acoustic scene classification with matrix factorization for unsupervised feature learning," in *Proc. of ICASSP*, 2016.
 - V. Bisot, S. Essid et G. Richard, "HOG and Subband Power Distribution Image Features for Acoustic Scene Classification," in *Proc. of EUSIPCO*, 2015.

Evaluation metrics

Total Error Rate [1]

$$\mathsf{ER} = \frac{\sum_k \mathsf{I}_k + \sum_k \mathsf{S}_k + \sum_k \mathsf{D}_k}{\sum_k \mathsf{N}_k}$$

Different variants to model different aspects

Sparse NMF: promote sparse activations

$$\min_{\mathbf{W},\mathbf{H}\geq 0}\sum_{i}D_{\beta}(\mathbf{v}_{i},\sum_{k}\mathsf{h}_{ki}\frac{\mathbf{w}_{k}}{\|\mathbf{w}_{k}\|})+\lambda_{1}\sum_{i,k}\mathsf{h}_{ik},$$

Convolutive NMF: temporal context in the decomposition

$$\mathbf{S} \approx \sum_{t=0}^{\tau-1} \mathbf{W}_t \stackrel{t \to}{\mathbf{H}}, \qquad \qquad \mathbf{F} \in \mathbb{R}_+^{F \times T} \text{ a scene spectrogram} \\ \mathbf{W}_t[:, k] \to \text{ frame } t \text{ for basis } k \end{cases}$$

Kernel decompositions: decomposing non-linearly separable data

 $\Phi(\mathbf{V}) \approx \Phi(\mathbf{V})\mathbf{W}\mathbf{H}$ $\mathbf{\bullet}$ kernel mapping function

Event detection settings

- Draw fixed length sequences randomly for training
- Trained with ADAM algorithm with early stopping
- Parameter search for all networks on development set

NMF + X	MLP	RNN	CRNN
MLP layers	3	2	-
GRU layers	-	3	2
CNN layers	-	-	3
MLP/RNN units	256	512	512
CNN units	-	-	32
CNN filter size	-	-	10
Input sequence length (sec)		5	10

Adaptive scaling TNMF algorithm

- Goal: scale the projections for each mini-batch with updated statistics to improve model training and performance
 - ▶ *N* the number of training examples in **V** divided into *B* batches **V**_b
 - ▶ (μ, σ) mean and standard deviation of optimal projection features **H**
 - (μ_b, σ_b) mean and standard mini-batch \mathbf{H}_b

Classifier update

- Compute and scale optimal projection on full training data $\mathbf{H}' = \frac{1}{\sigma}(\mathbf{H}^* m)$
- Update A with one iteration of L-BFGS for logistic regression

Dictionary update on one epoch

- 1. Draw a random data point \mathbf{v} with label y
- 2. Compute optimal projection $\mathbf{H}_{b}^{\star}(\mathbf{V}_{b}, \mathbf{W})$ and statistics (μ_{b}, σ_{b})
- 3. Update global statistics $m = m \frac{1}{B}(m m_b)$ and $\sigma^2 = \sigma^2 \frac{1}{B}(\sigma^2 \sigma_b^2)$
- 4. Scale mini-batch projections $\mathbf{H}_{b}^{\prime} = \frac{1}{\sigma}(\mathbf{H}_{b} m)$
- 5. Update **W** by projected gradient with $\mathbf{H}_{b}^{'}$ as previously