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Acoustic scene and event analysis

I Make machines capable of analyzing and reacting to their
surrounding acoustic environment yoo
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The different tasks
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Applications and interest

I Context aware devices
• Smart cars and homes
• Noise monitoring in cities
• Surveillance

I Analysis and indexing
• Multimedia indexing
• Forensics
• Bio-acoustics

• Machines can outperform humans
→ below 60% accuracy for humans
→ up to 90% for computational approaches

Scene classification Event detection
Dcase challenge 2013 2016 2017 2013 2016 2017
Nbr teams 10 35 49 7 21 34
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Acoustic scene analysis systems

≈
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Early approaches

• Combine hand-crafted acoustic features inspired from music and
speech processing tasks

• Rely on simple linear or probabilistic classifiers to interpret the
features
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Modern approaches and remaining problems

• Recent rise of deep learning approaches
→ Scene and event classification [Piczark et al., 2015; Valenti et al. 2016]
→ Event detection and tagging [Cakir et al., 2015,2017; Xu et al. 2017]

• Learning complex models from time-frequency representations
→ Representation learning = convolutional layers

I Are simple spectrograms the best input?
I What happens in more challenging conditions (overlap, noise ...)?
I How to deal with limited training data?
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Our approach

• An extra feature learning step with nonnegative matrix factorization
(NMF) techniques
→ Learn decompositions suited for representing multi-source

environments
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Outline and contributions

• Combination of spectrogram image features for improved acoustic
scene classification

• Unsupervised feature learning with NMF
→ Automatically learn relevant features in multi-source environments
→ Promising improvements with a simple system design

• Supervised NMF with TNMF
→ Learn discriminative dictionaries for better representations
→ Simple models to challenge complex neural networks

• Deep learning and NMF
→ NMF as suitable input to deep networks
→ Event detection with NMF + recurrent and convolutional networks
→ Jointly learn nonnegative dictionaries and neural networks
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Unsupervised feature learning
Scene classification evaluation

Task-driven NMF

Deep learning and NMF

Conclusion

8/42



Dictionary learning and scene understanding

I Humans rely on specific event cues to recognize acoustic
environments

train station

restaurant beach

city center

restaurant beach

city centertrain station
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Nonnegative matrix factorization
NMF model with K components

min
W,H≥0

D(V‖WH) with W ∈ RF×K
+ and H ∈ RK×T

+
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A different approach

• Distance between individual NMF dictionaries as classification criteria [Cauchi et
al., 2011; Benetos et al., 2012]

• NMF as a direct event detection tool: event activity by thresholding activation
matrix [Mesaros et al.,2015,2016; Benetos et al., 2016]

I Our approach: use NMF as a feature learning tool
→ Learn one dictionary of basis events representing the entire data
→ Train classifiers separately on NMF representations
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From spectrograms to NMF features

I Group all scene constant-Q transform spectrograms in one data
matrix

… …
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Scene classification with NMF

train station

restaurant beach
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Scene classification datasets

I Evaluation on 3 of the largest public scene classification datasets

LITIS Rouen DCASE 2016 DCASE 2017
Nbr of segments 3026 1170 4680
Length of segments 30 sec 30 sec 10 sec
Nbr of labels 19 15 15
Cross validation folds 20 4 4

bus car café/restaurant city center
forest path grocery store home beach
library metro station office residential area
train tram park
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First scene classification results

I Accuracy scores on the 3 scene classification datasets

I Comparison of proposed techniques to best hand-crafted features from
DCASE 2013 challenge

I Histogram of oriented gradients (HOG) image features
I MFCC + Recurrence quantification analysis (RQA)

[1] Rakotomamonjy and Gasso 2014, [2] Bisot et al. 2015, [3] Roma et al. 2013,
15/42



First scene classification results

I Accuracy scores on the 3 scene classification datasets

I Comparison of proposed techniques to best hand-crafted features from
DCASE 2013 challenge

I Histogram of oriented gradients (HOG) image features
I MFCC + Recurrence quantification analysis (RQA)

[1] Rakotomamonjy and Gasso 2014, [2] Bisot et al. 2015, [3] Roma et al. 2013,
15/42



Potential for improvement
• Confusion matrix for Sparse NMF on DCASE 2017 dataset
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• Confusions between
similar acoustic
environments

• Promising results with
unsupervised feature
learning and simple
classifiers

yoo yoo

• Can we adapt the decomposition to the task?
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Supervised Matrix Factorization

I Make the decomposition better at dealing with the task at hand
→ Leverage label information to learn more discriminative dictionaries

restaurant

Label

Data matrix Supervised
dictionary learning Classifier

Task-driven dictionary learning (TDL) [Mairal et al. 2009]

• Jointly learn dictionaries and classifiers
• Allows for efficient nonnegative variants
→ source separation [Sprechmann et al. 2014]
→ speaker identification [Serizel et al. 2017]
→ acoustic scene and event classification
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Task-driven dictionary learning

TDL formulation
I Composition of optimal projection function and a supervised loss function

h?(v,W) = minh∈RK ‖v−Wh‖+ λ1‖h‖1 + λ2
2 ‖h‖

2
2

minW,A Ey ,v[`s(y ,A,h?(v,W))] + ν
2‖A‖

2
2

• h?(v,W): optimal projection of a data point on the dictionary → learned
features for classification

• `1 and `2 regularizations: λ1 and λ2

• `s : supervised classification loss
• A classifier parameters
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TNMF problem formulation

Task-driven NMF{
h?(v,W) = minh∈RK

+
Dβ(v|Wh) + λ1‖h‖1 + λ2

2 ‖h‖
2
2

minW≥0,A Ey ,v[`s(y ,A,h?(v,W))] + ν
2‖A‖

2
2

• Regroup the sparse NMF-based classification systems in one problem
I h?(v,W) → sparse NMF projection with the β-divergence
I `s(y ,A,h?(v,W)) = − log(P(y |h?,A)) → multinomial logistic

regression

  

V W H≈ ×

ĥ A y

min
W≥0,A

E y,V [l s( y ,A , ĥ(v ,W ))]+ ν
2

||A ||2
2

v
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TNMF algorithm

Alternate update of A et W
For a fixed number of iterations:

{Classifier update}
I Compute optimal projection on full training data H?(V,W)

I Update A with one iteration of L-BFGS for logistic regression

{Dictionary update}

I On one epoch

1. Draw a random data point v with label y
2. Compute optimal projection h?(v,W) and gradient ∇W`s(y ,A, h?(v,W))
3. Update W by projected gradient W← ΠW+ [W− ρt∇W`s(y ,A, h?(v,W))]

I ΠW+ projection operation on nonnegative dictionaries with unit `2 norm
basis vectors

Code available on github.com/rserizel/TGNMF
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Algorithm comparison

I Algorithm comparison on DCASE 2017 ASC dataset
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Scene classification results

I DCASE 2016 development data set

I DCASE 2017 development data set
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DCASE 2016 challenge

Features Classifier Accuracy Rank/49
[1] Mel spectrum CNN 86.2 7
[2] Audio features DNN fusion 86.4 5
[3] Cepstral features DNN + GMM 87.2 4
[4] MFCC + spectrograms CNN + I-vector 89.7 1
Our system CQT TNMF fusion 87.7 3

• TNMF system ranked 2nd out of 35 teams
• Above almost all deep learning-based systems

[1] Valenti et al. [2] Marchi et al. [3] Park et al. [4] Eghbal-Zadeh et al.
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Sound event detection

• DCASE 2016 task3: event detection in real life conditions
→ 12 recordings of 3 to 5 minutes per scene
→ 2 environments: home and residential area
→ 7 to 11 event categories per scene

• TUT SED Synth 2016: Synthetic dataset
→ 100 synthetic mixtures of 5 minutes each
→ Mixtures of isolated events collected for online sound banks
→ 16 different labels with various degrees of overlap
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NMF-based system for event detection

I Turn multi-label problem into a simple multi-class problem for training
I Threshold output probabilities → predict multiple labels per frame

25/42



Event detection results
I DCASE 2016 Task3 dataset: event detection in real life conditions

I TUT SED synth 2016: synthetic event detection dataset

[1] Mesaros et al. 2016 [2] Zohrër and Penkopf, 2016 [3] Vu and Wang, 2016 [4] Cakir et al.
2017
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DNN for sound scene analysis

Scene and event classification
I Convolutional neural networks on time-frequency representations

train station

street

restaurant

train station

Acoustic event detection
I Convolutional recurrent neural networks (CRNN) on time-frequency

representations

27/42



NMF as input of DNNs
I NMF → good representation learning tools for acoustic scenes
I Deep neural networks → powerful classification and detection models

• Compatibility between NMF and standard fully-connected layers
• NMF features with RNN and CNN layers for event detection
• Jointly learning NMF and DNN parameters in the TNMF framework
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Other works linking NMF to DNNs

I Replace NMF with deep auto-encoders for source separation
[Smaragdis et al., 2017]

I Build a deep NMF by unfolding multiplicative update algorithm for
NMF [Le Roux et al., 2015; Wisdom et al. 2017 ]

...
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Layer-wise pre-training and NMF
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TNMF = one hidden layer MLP
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DNN-TNMF

32/42



Outline

Unsupervised feature learning

Task-driven NMF

Deep learning and NMF
Scene classification evaluation
Event detection evaluation

Conclusion

32/42



DNN architecture search

• Grid-search of network best architecture for all input representations
→ Simple multi-layer perceptron as a classifier trained with SGD
→ ReLU activations and dropout

Dcase 2016 Dcase2017

Layers Units Layers Units
CQT 3 256 3 512
NMF K = 256 2 256 2 256
NMF K = 512 2 256 3 256
NMF K = 1024 2 512 3 512

33/42



Scene classification results
I DCASE development sets results

Dcase 2016 Challenge set
Input Classifier Accuracy Rank/49
TNMF Logistic regression 87.7 3

[1] MFCC + Mel CNN + I vector 89.7 1
CQT DNN 86.7 -
NMF DNN 88.5 -
TNMF DNN 90.5 -

[1] Eghbal-Zadeh et al. 2016
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Room for improvement

• DCASE 2017 challenge for scene classification

I More challenging conditions: mismatch between training and challenge set
→ Drop in performance for all methods on challenge set

I What did the top systems do that we didn’t?
• Use of augmentations and vary input representations
• Include temporal modeling in neural networks (see NMF+CRNN)
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NMF+CRNN for event detection

I Inspired from state of the art event detection CRNNs [Cakir et al.,
2017]

I Separation of representation learning in two steps
→ NMF representation on the frequency axis
→ Model temporal information with CNN and RNN layers
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Results (1)
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Results (2)
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DNN-TNMF first results

I Jointly learn NMF and 1 hidden layer DNN for scene classification

Dcase 2017
Sparse NMF TNMF NMF + DNN DNN-TNMF

K = 256 79.3 85.0 84.3 85.5
K = 512 83.1 86.3 86.3 86.1
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Summary of contributions

• A combination of spectrogram image features for improved scene
classification

• Simple and efficient unsupervised NMF feature learning systems
→ Clear benefit compared to hand-crafted audio features

• Adapt NMF feature learning to the task with TNMF
→ Learn smaller more discriminative dictionaries
→ An efficient alternative to deep learning on smaller datasets

• NMF as a better input to train deep networks
→ Leave representation learning role to NMF for multi-source

environments
→ Allows for better performance with simpler networks
→ Steps towards an end-to-end system with DNN-TNMF

40/42



Perspectives

I Make our systems more robust to noisy and unseen data
• Vary input time-frequency representations to vary NMF features
• Explore use of compatible augmentations with our approach
• Simply perform fusion with various networks

I Large scale weakly-labeled data and tagging problems

• Recent release of larger scale event classification datasets with Audioset
• Adapt supervised NMF models to multiple instance learning for tagging
• Extend our models to networks with attention classification layers

I Towards an end-to-end approach with DNN-TNMF
• Exploration of efficient algorithms on large scale datasets
• Study compatibility with recurrent and convolutional layers
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Publications

I Journal article and book chapter
• V. Bisot, R. Serizel, S. Essid et G. Richard, “Acoustic scene classification with

matrix factorization for unsupervised feature learning,” in IEEE Transactions on
Audio, Speech, and Language Processing, 2017.

• R. Serizel, V. Bisot, S. Essid et G. Richard, “Acoustic features for environmental
sound analysis,” in Computational analysis of sound scenes and events, Springer,
2018.

I Conference proceedings
• V. Bisot, R. Serizel, S. Essid et G. Richard, “Nonegative feature learning methods

for acoustic scene classification,” in Proc. of DCASE Workshop, 2017.
• V. Bisot, R. Serizel, S. Essid et G. Richard, “Leveraging deep neural networks with

nonnegative representations for improved environmental sound classification,” in
Proc. of MLSP, 2017.

• V. Bisot, R. Serizel, S. Essid et G. Richard, “Overlapping sound event detection
with supervised nonnegative matrix factorization,” in Proc. of ICASSP, 2017.

• V. Bisot, R. Serizel, S. Essid et G. Richard, “Acoustic scene classification with
matrix factorization for unsupervised feature learning,” in Proc. of ICASSP, 2016.

• V. Bisot, S. Essid et G. Richard, “HOG and Subband Power Distribution Image
Features for Acoustic Scene Classification,” in Proc. of EUSIPCO, 2015.
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Evaluation metrics
Ground truth

System output

Insertions 0 1 0

Deletions 0 0 1

Substitutions 1 0 0

N events 2 3 2

Total Error Rate [1]

ER =

∑
k Ik +

∑
k Sk +

∑
k Dk∑

k Nk

• Ik : Insertions in segment k

• Sk : Substitutions in segment k

• Dk : Deletions in segment k

For the example:

ER =
1 + 1 + 1
2 + 3 + 2

= 0.43

[1] More details about event detection metrics: A. Mesaros et al., TUT database for acoustic
scene classification and sound event detection, in Proc. of EUSIPCO, 2015
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Different variants to model different aspects

Sparse NMF: promote sparse activations

min
W,H≥0

∑
i

Dβ(vi ,
∑
k

hki
wk

‖wk‖
) + λ1

∑
i ,k

hik ,

Convolutive NMF: temporal context in the decomposition

S ≈
τ−1∑
t=0

Wt

t→
H ,

I S ∈ RF×T
+ a scene spectrogram

I Wt [:, k] → frame t for basis k

Kernel decompositions: decomposing non-linearly separable data

Φ(V) ≈ Φ(V)WH I Φ kernel mapping function
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Event detection settings

I Draw fixed length sequences randomly for training
I Trained with ADAM algorithm with early stopping
I Parameter search for all networks on development set

NMF + X MLP RNN CRNN

MLP layers 3 2 -
GRU layers - 3 2
CNN layers - - 3

MLP/RNN units 256 512 512
CNN units - - 32

CNN filter size - - 10
Input sequence length (sec) - 5 10
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Adaptive scaling TNMF algorithm

I Goal: scale the projections for each mini-batch with updated statistics to
improve model training and performance

I N the number of training examples in V divided into B batches Vb

I (µ, σ) mean and standard deviation of optimal projection features H
I (µb, σb) mean and standard mini-batch Hb

Classifier update
I Compute and scale optimal projection on full training data H

′
= 1

σ
(H? −m)

I Update A with one iteration of L-BFGS for logistic regression

Dictionary update on one epoch
1. Draw a random data point v with label y

2. Compute optimal projection H?b (Vb,W) and statistics (µb, σb)

3. Update global statistics m = m − 1
B
(m −mb) and σ2 = σ2 − 1

B
(σ2 − σ2

b )

4. Scale mini-batch projections H
′
b = 1

σ
(Hb −m)

5. Update W by projected gradient with H
′
b as previously
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